
ICPG TechnologyOverviewSeries

ConsensusSystem
Rev.1

Timo Hanke, Mahnush Movahedi and Dominic Williams
ABSTRACT

The Dfinity blockchain computer provides a secure, performant
and flexible consensus mechanism. While first defined for a permis-
sioned participation model, the consensus mechanism itself can be
paired with any method of Sybil resistance (e.g. proof-of-work or
proof-of-stake) to create an open participation model. Dfinity’s
greatest strength is unfolded in the most challenging proof-of-stake
case.

At its core,Dfinity contains a decentralized randomness beacon
which acts as a verifiable random function (VRF) that produces a
stream of outputs over time. The novel technique behind the beacon
relies on the existence of a unique-deterministic, non-interactive,
DKG-friendly threshold signatures scheme. The only known ex-
amples of such a scheme are pairing-based and derived from BLS
[3, 10].

The Dfinity blockchain is layered on top of the Dfinity beacon
and uses the beacon as its source of randomness for leader selec-
tion and leader ranking. A "weight" is attributed to a chain based
on the ranks of the leaders who propose the blocks in the chain,
and that weight is used to select between competing chains. The
Dfinity blockchain is further hardened by a notarization process
which dramatically improves the time to finality and eliminates the
nothing-at-stake and selfish mining attacks.

Dfinity’s consensus algorithm is made to scale through contin-
uous quorum selections driven by the random beacon. In practice,
Dfinity achieves block times of a few seconds and transaction fi-
nality after only two confirmations. The system gracefully handles
temporary losses of network synchrony including network splits,
while it is provably secure under synchrony.

Dfinity will be introduced in a series of technology overviews,
each highlighting an independent innovation in Dfinity such as
the consensus backbone, smart contract language, virtual machine,
concurrent contract execution model, daemon contracts, peer-to-
peer networks and secure broadcast, governance mechanism and
scaling techniques. The present document will focus on the con-

1 PROLOGUE

DFINITY is a decentralized network design whose protocols gen-
erate a reliable "virtual blockchain computer" running on top of a
peer-to-peer network upon which software can be installed and
can operate in the tamperproof mode of smart contracts. The goal
is for the virtual computer to finalize computations quickly (using
short block times and by requiring only a small number of blocks as
"confirmations"), to provide predictable performance (by keeping
the time between confirmations approximately constant), and for
computational and storage capacity to scale up without bounds as
demand for its services increases (using novel validation mecha-
nisms and sharding systems discussed in our other papers). The
protocols must be secure against an adversary controlling less than
a certain critical proportion of its nodes, must generate crypto-
graphic randomness (which is required by advanced decentralized
applications) and must maintain a decentralized nature as it grows
in size to millions of nodes.

sensus backbone and cryptographic randomness.
Dfinity has an unbiasable, verifiable random function (VRF)

built-in at the core of its protocol. The VRF not only drives the
consensus, it will also be the foundation for scaling techniques such
as sharding, validation towers, etc. Moreover, the VRF produced
by the consensus layer is available to the application layer, i.e., to
the smart contracts and virtual machine. In this way, the consensus
backbone is intertwined with many of the other topics.

2 INTRODUCTION

Dfinity’s consensus mechanism has four layers as depicted in
Fig. 1. The first layer provides registered and Sybil-resistant client
identities. On the second layer is a decentralized random beacon.
On the third layer is a blockchain that is driven by the random bea-
con through a probabilistic mechanism for leader ranking. On the
fourth layer is a decentralized notary that provides timestamping
and publication guarantees, and is ultimately responsible for near-
instant finality. Dfinity’s consensus layers and other key aspects
of the consensus mechanism can be summarized in the following
main categories.

stneilC weN

srevresbO sr
otc

A la
nretx

E

sreya
L l

oc
ot

or
P s

us
nes

n
o

C

reyaL yratoN

sresU

evresbO

noitcasnarT

retsigeR

reyaL niahckcolB

reyaL nocaeB modnaR

reyaL ytitnedI

Figure 1: Dfinity’s consensus mechanism layers. 1. Identity layer:

provides a registry of all clients. 2. Random Beacon layer: provides

the source of randomness (VRF) for all higher layers including ap-

plications (smart contracts). 3. Blockchain layer: builds a blockchain

from validated transactions via the Probabilistic Slot Protocol driven

by the random beacon. 4. Notarization layer: provides fast finality

guarantees to clients and external observers.

1

1st layer: Identities and Registry. The active participants in the
Dfinity network are called clients. All clients in Dfinity are reg-
istered, i.e., have permanent, pseudonymous identities. The regis-
tration of clients has advantages over the typical proof-of-work
blockchains where it is impossible to link different blocks to the
same miner. For example, if registration requires a security deposit,
a misbehaving client would lose its entire deposit, whereas a miner
in a typical proof-of-work blockchain would only forego the block
reward during the time of misbehavior. As a result, the penalty for
misbehavior can be magnitudes larger for registered identities than
it can be for unregistered identities. This is particularly important
as blockchains can track unbounded external value that exceeds
the value of the native token itself. Moreover, Dfinity supports
open membership by providing a protocol to register new clients
via a stake deposit with a lock-up period. This is the responsibility
of the first layer.

2nd layer: Random Beacon. The random beacon in the second
layer is an unbiasable, verifiable random function (VRF) that is
produced jointly by registered clients. Each random output of the
VRF is unpredictable by anyone until just before it becomes avail-
able to everyone. This is a key technology of the Dfinity system
which relies on a threshold signature scheme with the properties of
uniqueness and non-interactivity. The BLS signature scheme is the
only practical1 scheme that can provide these features, andDfinity
has a particularly optimized implementation of BLS built in [2, 11].
Using a threshold mechanism for randomness creation solves the
fundamental "last actor" problem. Any decentralized protocol for
creating public randomness without a threshold mechanism suffers
from the problem that the last actor in that protocol knows the next
random value and can decide to abort the protocol.

3rd layer: Blockchain and fork resolution. The third layer deploys
the "probabilistic slot protocol" (PSP). This protocol ranks the clients
for each height of the chain, in an order that is derived determin-
istically from the unbiased output of the random beacon for that
height. A weight is then assigned to block proposals based on the
proposer’s rank such that blocks from clients at the top of the list
receive a higher weight. Forks are resolved by giving favor to the
"heaviest" chain in terms of accumulated block weight – quite sim-
ilar to how traditional proof-of-work consensus is based on the
highest accumulated amount of work. The first advantage of the
PSP protocol is that the ranking is available instantaneously, which
allows for a predictable, constant block time. The second advantage
is that there is always a single highest-ranked client which allows
for a homogenous network bandwidth utilization. Instead, a race
between clients would favor a usage in bursts.

4th layer: Notarization and near-instant finality. Finality of a given
transactionmeans a system-wide consensus that a given transaction
has been irreversibly executed. While most distributed systems
require rapid transaction finality, existing blockchain techniques are
unable to provide it. Dfinity deploys the novel technique of block
notarization in its fourth layer to speed up finality. A notarization
is a threshold signature under a block created jointly by registered
clients. Only notarized blocks can be included in a chain. Of all

the block candidates that are presented to a client for notarization,
the client only notarizes the highest-ranked one with respect to a
publicly verifiable ranking algorithm driven by the random beacon.
It is important to emphasize that notarization is not consensus
because it is possible, due to adverse timing, for more than one
block to get notarized at a given height. This is explicitly tolerated
and an important difference to other proof-of-stake proposals that
apply full Byzantine agreement at every block. Dfinity achieves
its high speed and short block times exactly because notarization is
not full consensus. However, notarization can be seen as optimistic
consensus because it will frequently be the case that only one
block gets notarized. Whether this is the case can be detected after
one subsequent block plus a relay time (cf. Theorem 9.3). Hence,
whenever the broadcast network functions normally a transaction
is final in the Dfinity consensus after two notarized confirmations

1RSA-based alternatives exist but suffer from an impracticality of setting up the thresh-
old keys without a trusted dealer.

plus a network traversal time.
We like to emphasize that a notarization in Dfinity is not pri-

marily a validity guarantee but rather a timestamp plus a proof
of publication. The notarization step makes it impossible for the
adversary to build and sustain a chain of linked, notarized blocks
in secret. For this reason, Dfinity does not suffer from the selfish
mining attack [4] or the nothing-at-stake problem.

Threshold Relay and Network Scalability. Dfinity’s consensus
is designed to operate on a network of millions of clients. To en-
able scalability to this extent, the random beacon and notarization
protocols are designed such that they can be safely and efficiently
delegated to a committee. A committee is a randomly sampled sub-
set of all registered clients that deploys a threshold mechanism (for
safety) that is moreover non-interactive (for efficiency).

InDfinity, the active committee changes regularly. After having
temporarily executed the protocol on behalf of all clients, the com-
mittee relays the execution to another pre-configured committee.
We call this technique "Threshold Relay" in Dfinity.

Consistency vs availability. It is worth noting that network splits
are implicitly detectable byDfinity and are handled conservatively.
This is a consequence of the random sampling of committees. If
the network splits in two halves of more or less the same size,
this will automatically cause the random beacon to pause within
a few blocks so that none of the sides can continue. The random
beacon will automatically resume once the network reconnects. If
the network splits in a way that one component is significantly
larger than half of the network, the protocol may continue in that
one large component but will pause in all other components.

Network splits can not only occur when the communication
is interrupted. Another important and even more realistic case is
when there are multiple implementations of the Dfinity client and
they disagree due to the exposures of a bug. Dfinity handles this
case gracefully. If there are two clients in evenly widespread use
and they start to disagree, then both clients will pause. If there are
many evenly spread clients and one starts to disagree from all the
others, then the network will likely continue and only the isolated
client will pause. This is exactly the desired behavior in the given
scenarios. Other blockchains do not handle this case well and the
occurrence of such an event poses a real threat to them. The reason
is that these chains put too much emphasis on availability rather
than consistency.

2

Paper organization. § 3 presents a high-level view of the protocol.
§ 4 specifies our system, communication and threat models and
introduces relevant notations. § 5-7 describe the probabilistic slot
protocol and random beacon protocol in detail. § 8.1 introduces the
Threshold Relay technique which allows the protocols to be safely
executed by pre-configured committees rather than by all replicas.
§ 8.2 describes the open participation model which allows members
to join and leave the protocol over time. Finally, § 9 provides the
security and correctness proofs for the Dfinity protocol.

3 A HIGH-LEVEL VIEW OF THE CONSENSUS

PROTOCOL

Roles. The Dfinity peer-to-peer network consists of clients con-
nected by a broadcast network over which they can send messages
to everyone. Clients fulfill three active functions: (a) participate
in the decentralized random beacon, (b) participate in the decen-
tralized notary, (c) propose blocks. Clients also observe blocks and
build their own view of the finalized chain.

Block ranking. If we abstract away the decentralized aspect of the
random beacon and notary then the consensus protocol is depicted
in Fig. 2. The protocol proceeds in rounds such that there is a
one-to-one correspondence between the round number and the
position (called height) in the chain. At the beginning of round r ,
the randomness beacon produces a fresh, verifiable random value
and broadcasts it to the network (Fig. 2, step 1). The random beacon
output for round r , denoted by ξr , determines a priority ranking of
all registered clients. Any client can propose a block but a higher
priority level of the client means a higher chance that the block
will get notarized and that block makers in the subsequent round

Committees and Threshold Relay. To improve scalability, the ran-
dom beacon and notary are run by a committee. In a small scale
network the committee can be the set of all clients. In a large scale
network, the committee is smaller than the set of all clients and
changes from round to round (i.e., from block to block). The random
beacon output in one round chooses the committee for the next
round according to the threshold relay technique described in § 8.1.
The committee size is configured based on a failure probability
calculation (see § 4.2.4).

will build on top of it.

Notarization. Once a client sees a valid ξr , it pools transactions
collected from users into a block candidate and sends it to the
notary (Fig. 2, step 2). The notary waits for a specific constant time
(BlockTime) to receive the proposed blocks. Then, the notary runs
the ranking mechanism based on the random beacon, chooses the
highest-ranked block, and signs and broadcasts it (Fig. 2, step 3). As
soon as clients receive a notarized block, they use it to extend their
copies of the blockchain thereby ending round r in their respective
views. Finally, the random beacon broadcasts ξr+1 which marks the
beginning of a new round.

Decentralized Random Beacon. The random beacon protocol is
completely decentralized and operated by all clients in the com-
mittee together. Nevertheless from the outside (i.e., looking only at
the outputs produced and the timing of the outputs), the beacon

Notary

Random
Beacon

Block
Makers1. Random

value

1. Random
value

2. Block
proposals

3. Notarized
Block

3. Notarized
Block

Figure 2: High-level overview on the system components. 1. The ran-

dom beacon in round r produces random output ξr . 2. The block

maker(s) selected deterministically by ξr propose block(s) for round

r . 3. The decentralized notary notarizes the block(s) of the preferred

block maker(s). 4. The random beacon advances to round r + 1 upon

seeing a notarized block from round r .

behaves like a trusted third party. We emphasize that the commit-
tee does not need to run a Byzantine agreement protocol for every
output that the beacon produces. Instead, agreement on each of the
beacon’s output is automatic because of the uniqueness property of
our threshold signature scheme. This explains how the random bea-
con can run at such high speed, and thereby theDfinity blockchain
can achieve such a low block time.

4 MODELS AND PRELIMINARIES

Decentralized Notary. Aswas the case for the random beacon, the

notary is completely decentralized and operated by all clients in the

committee together and its behavior as a whole can be equated to a

trusted third party. However, unlike the random beacon, the notary

seeks to agree on live input – a block – rather than on a pseudo-
random number. There is no "magic" cryptography available for

this, so a full Byzantine agreement protocol would be the only

option. But instead of doing that, the Dfinity notary merely runs

an optimistICPGrotocol which achieves consensus "under norm
al operation" though may sometimes notarize more than one blo
ck per round. If this happens, Dfinity’s chain ranking algorithm
will resolve the fork and finality can be achieved in a subsequent no
rmal round. The optimistICPG rotocol is non-interactive and fast
, hence the notary can run at the same speed as the random beaco
n.

4.1 System Model

4.1.1 Replicas. From now on we speak of clients as replicas and
label them 1, 2, . . . ∈ N. LetU be the finite set of labels of all replicas,
called the universe. Each replica i ∈ U has a public/private key pair
(pki , ski). We assume the set {pki | i ∈ U } is known and agreed
upon2 by all i ∈ U .

4.1.2 Authentication. Each protocol message is signed by the
replica that issues the message. The replicas only accept and act
upon a message if the message is signed by one of the ski , i ∈ U .

4.1.3 Groups. At any given time, some or all i ∈ U are arranged
into one or more subsets G1,G2, . . . ⊆ U called groups, of which
2In practice, the agreement is achieved by registering all replicas on the blockchain
with their public key.

3

a single one, the committee, is active to drive progress and ensure
consensus. We assume all groups G j have the same size n. The
number n is a system parameter called the group size.

4.1.4 Synchrony. For the practical use of Dfinity we assume
a semi-synchronous network by which we mean that the network
traversal time can be modeled by a random variable Y whose prob-
ability distribution is known. The Dfinity protocol then chooses
two system-wide timeout constants BlockTime and T based on the
distribution of Y and the security parameter of the system. In the
formal security analysis in § 9 we give proofs for the synchronous
case in which an upper bound ∆ for Y is known.

The two constants are responsible for liveness (BlockTime) and
safety (T) of the system, respectively. Timeout clocks are triggered
based on local events, i.e. received messages. The protocol does not
depend on a global time nor does it assume synchronized clocks
between the replicas.

The system evolves in rounds. Replicas advance to the next round
based on events. The rounds are not expected to be in sync across
different replicas.

4.2 Threat Model

4.2.1 Byzantine replicas. A replica that faithfully follows the
protocol is called honest and all other replicas are called Byzantine.
A Byzantine i ∈ U may behave arbitrarily, e.g., it may refuse to
participate in the protocol or it may collude with others to perform
a coordinated attack the system.

4.2.2 Adversarial strength. For anyG ⊆ U let f (G) denote the
number of Byzantine replicas inG.

Assumption 1. There is β > 2 such that

|U | > β f (U). (4.1)

The value 1/β is called the adversarial strength. In practice, As-
sumption 1 is achieved through economic incentives in conjunction
with a form of Sybil resistance.3

4.2.3 Honest groups. Let n be the group size. Then a groupG is
called honest if

n > 2f (G). (4.2)
The protocols described in § 5-7 rely on

Assumption 2. Each groupG used in the system is honest.

4.2.4 Random samples. Given Assumption 1, the universeU it-
self is honest. Each groupG ⊆ U used in the system is a random sam-
ple of size n drawn fromU . Given n, the probability Prob[G honest]
can be calculated as follows:

Prob[G honest] = CDFhg(⌈n/2⌉ − 1,n, ⌊|U |/β⌋, |U |)

Proposition 4.1. Let CDFhg(x ,n,M,N) denote the cumulative

distribution function of the hypergeometrICPGrobability distributio

n where N is the population size,M is the number of successes4 in t

he population, n is the sample size and x is the maximum numbe

r of successes allowed per sample. Then

. (4.3)

Given an acceptable failure probability ρ, we can solve (4.3) for
the minimal group size n = n(β, ρ, |U |)

3 Sybil resistance is achieved for example by requiring a stake deposit for each replica.
Then Assumption 1 translates to the assumption that at least a 1/β fraction of stake
deposits were made by honest participants.
4In our application M is the number of Byzantine replicas in U .

such that

Prob[G honest] > 1 − ρ

for each random sample G ⊆ U with |G | = n. The result for the
example value |U | = 104 and different values for ρ and β are shown
in Figure 3 below.

− log2 ρ
n(β, ρ, 104)

β = 3 β = 4 β = 5
40 405 169 111
64 651 277 181
80 811 349 227
128 1255 555 365

Figure 3: Minimal group size for |U | = 104
. Example values for the

minimal group size n(β, ρ, 104) for adversarial strength 1/β and fail-

ure probability ρ .

As the population size increases to infinity the hypergeometric
distribution converges to the binomial distribution. Thus, as |U |
increases to infinity we get

Proposition 4.2. Let CDFbinom(x ,n,p) denote the cumulative

distribution function of the binomial probability distribution where p
is the success probability per draw, n is the sample size and x is the

maximum number of successes allowed per sample. Then

Prob[G honest] ≥ CDFbinom(⌈n/2⌉ − 1,n, 1/β). (4.4)

Given ρ, we can solve (4.4) for n and get the minimal group size
n(β, ρ) such that n(β, ρ) ≥ n(β, ρ, |U |) for all values of |U |.

The result for different values for ρ and β are shown in Figure 4
below. As one can see, within the range of interest for ρ, the group
size is approximately linear in − log2 ρ. The resulting group sizes
are practical for the protocols described in this paper.5

− log2 ρ
n(β, ρ)

β = 3 β = 4 β = 5
40 423 173 111
64 701 287 185
80 887 363 235
128 1447 593 383

Figure 4: Minimal group size for arbitrarily largeU . Example values

for the minimal group size n(β, ρ) for adversarial strength 1/β and

failure probability ρ .

4.2.5 Adaptive adversary. Weassume that the adversary ismildly

adaptive. This means the adversary may adaptively corrupt groups
but this corruption takes longer than the activity period of the
group.

5 Themain protocols described in this paper are so-called "non-interactive". Group sizes
of 1,000 have been tested in implementations and were proven to be unproblematic.
Dfinity plans to launch its network with group sizes in the order of 400.

4

4.3.1 Hash function. We assume we have a collision-resistant
hash function H with digests of bit-length l where l matches the
security parameter κ

4.3 CryptographICPGrimitives

.

4.3.2 Pseudo-random numbers. We also assume we have a cryp-
tographically secure pseudo-random number generator PRGwhich
turns a seed ξ into a sequence of values PRG(ξ , i) for i = 0, 1,

4.3.3 Pseudo-random permutations. The sequence PRG(ξ , i) can
be used as input to the Fisher-Yates shuffle [9, Algorithm 3.4.2P] to
produce a random permutation ofU . The result is an bijective map
{1, . . . , |U |} → U which we denote by PermU (ξ).

4.3.4 Diffie-Hellman. We assume that the adversary is bounded
computationally and that the computational Diffie-Hellman prob-
lem is hard for the elliptic curves with pairings in [2].

4.4 Dfinity’s Block Chain

We now define formally the concept of a blockchain in Dfinity.

4.4.1 Blocks.

Definition 4.3. A block is either a special genesis block or a tuple
(p, r , z,d,o) where p ∈ {0, 1}l is the hash reference to the previous
block, r ∈ N is the round number, z ∈ {0, 1}∗ is the notarization of
the previous block, d ∈ {0, 1}∗ is the data payload ("transactions"
and "state"), o ∈ U is the creator (or "owner"). A notarization is a
signature on the previous block created by a "notary". For a block
B = (p, r , z,d,o) we define

prvB := p, ntB := z, rdB := r , datB := d, ownB := o.

We emphasize that a block contains the notarization z of the
previous block in the chain that it references.

4.4.2 Chains.

Definition 4.4. By a chain C we mean a finite sequence of blocks
(B0,B1, . . . ,Br) with rdBi = i for all i , prvBi = H (Bi−1) for all
i > 0, and ntBi a valid signature of Bi−1 for all i > 0. The first
block B0 is a genesis block. The last block Br is called the head of
C . We define

lenC := r + 1, genC := B0, headC := Br .

Since blocks in a chain are linked through cryptographic hashes,
a chain is an authenticated data structure. A chain is completely
determined by its head by virtue of

Proposition 4.5. It is computationally infeasible to produce two

chains C , C ′ with headC = headC ′.

Definition 4.6. We write C(B) for the uniquely defined chain C
with headC = B. Given two chains C,C ′ we write C ≤ C ′ if C is a
prefix of C ′.

Assume from now on that all chains have the same genesis block
B0.

The chain C(S) is defined because every C(B),B ∈ S, contains
the genesis block. For any sets of blocks S,T with S ⊆ T we have
C(T) ≤ C(S). Suppose prvS := {prvB | B ∈ S \ {B0}} , ∅

Definition 4.7. For any non-empty set S of blocks we denote by
C(S) the largest common prefix of all chainsC(B) with B ∈ S .

. Then

C(prvS) ≤ C(S). (4.5)

5 PROBABILISTIC SLOT PROTOCOL AND

NOTARIZATION

As was explained in § 3, each protocol round runs through the
steps of producing a random beacon output (1), producing block
proposals (2), and producing block notarizations (3). Since more
than one block can get notarized, these steps alone do not provide
consensus. This is where the probabilistic slot protocol (PSP) steps
in.

Based on block weight, the PSP allows replicas to decide which
chain to build on when they propose a new block. Over time, this
leads to probabilistic consensus on a chain prefix, where the prob-
ability of finality increases the more "weight" is added to a chain.
This is analogous to proof-of-work chains, where the probability
of finality increases the more "work" is added to a chain. However,
Dfinity does not stop here and does not rely on this probabilis-
tic type of finality decisions. PSP is only used to guide the block
proposers. For finality, Dfinity applies a faster method utilizing a
notarization protocol.

For this section, we assume the random beacon (which we in-
troduce later in § 7) is working without failure and provides all
replicas with a new, unbiased random value ξr at the start of each
round r . Figure 5 shows how the protocol alternates between ex-
tending the blockchain and extending the random beacon chain and
demonstrates how the random beacon, block proposer and notary
advance in lockstep.

For the exposition of the present section, however, the decen-
tralized nature and precise inner workings of the random beacon
are irrelevant. Hence we simply regard the sequence ξr as given
without making further assumptions about it.

Regarding the threat model, we assume (4.2) for all groups, as
stated in Assumption 2. However, for the description and under-
standing of the notarization protocol it is sufficient to assume that
there is only a single group consisting of the universe of replicasU
and that

|U | > 2f (U). (5.1)

For simplicity of exposition we do adopt this view. It may then be
apparent that the protocol described in this section can be delegated
to any honest committee or sequence of honest committees.

5.1 Block Rank and Chain Weight

Based on ξr , the protocol assigns a rank to each i ∈ U and the rank
of the proposer defines the weight of a block as follows.

Definition 5.1 (Replica Ranking). The ranking permutation for
round r is defined as πr := PermU (ξr). The rank of i ∈ U in round
r is defined as πr (i).

Definition 5.2 (Block Ranking). The rank of a block B is defined
as rkB := πr (ownB) where r = rdB. We say B has higher priority
level than B′ if rkB < rkB′.

5

ξr−1 ξr

Br−1 Br

σBr ,i

zr−1

1
σBr ,i2...
σBr ,it

1. In round r , a block Br is being pro-

posed by a block maker that is prior-

itized by ξr . Br references the previ-

ous block Br−1. Members of the no-

tary committee,which is selected by ξr ,
sign off Br .

ξr−1 ξr

Br−1 Br

zr−1 zr

2. Br has received signature

from a majority of replicas and

is now notarized by virtue of the

aggregated signature zr . Every
replica enters round r + 1 upon

seeing zr .

ξr−1 ξr

Br−1 Br

zr−1

σr | |ξr ,i

zr

1
σr | |ξr ,i2...
σr | |ξr ,it

3. Members of the random beacon com-

mittee, which is selected by ξr , sign the

previous randomness ξr right after en-

tering round r + 1.

ξr−1 ξr

Br−1 Br

zr−1

ξr+1

zr

4. The next random beacon output ξr+1
is formed as a unique threshold signa-

ture. The cycle continues with step 1

for round r + 1.

Figure 5: Alternation between the random beacon chain and the notarized blockchain.

r − 3 r − 2 r − 1 r

w(0) = 1

w(1) = 1
2

w(2) = 1
4

w(2) = 1

wt C1 = 3.

8

25

wt C2 = 3

Figure 6: Block proposals. The weight of each block is

1, 1/2, 1/4, 1/8, . . ., based on the rank of its proposer. Each chain

accumulates the weights of its blocks (here shown only for blocks

starting at round r − 3). A replica with this view will resolve between

the two forks that are still active at round r and will choose to build

on the heavier one: C1.

If an adversary equivocates then there will be multiple blocks
for the same round with the same rank.

We assume the protocol has defined a monotonically decreasing
functionw . In particular, for Dfinity we instantiatew asw(x) =
2−x .

Definition 5.3 (Block Weight). The weight of a block B is defined
as wtB := w(rkB).

Definition 5.4 (ChainWeight). Theweight of a chainC = (B0, . . . ,Br)
ris defined as wtC :=

∑
h=0 wtBh .We call C heavier than another

chain C ′ if wtC > wtC ′.

5.2 Block Proposals

At each round each replica can propose a block. To do so, in round
r + 1, the replica selects the heaviest valid6 chain C with lenC = r
in its view (cf. Fig. 6). The replica then considers all new trans-
actions that it has received from users. The new proposed block
Br references headC and is composed of the selected transactions.
The replica broadcasts Br in order to request notarization from the
notary committee.

6 Validity of blocks is explained after Def. 5.5. A chain is valid if and only if all its
blocks are valid.

5.3 Block Notarization

The goal of notarization is to enforce that chains are only being
built from blocks that were published during their respective round,
not later. In other words, notarization prevents that an adversary
can build a private conflicting chain and reveal it later. Blocks that
are revealed too late cannot get notarized anymore, so that the
timely publication of block proposals is enforced. A notarization is
therefore regarded as a timestamp as well as a proof of publication.

The protocol guarantees to notarize at least one of multiple
proposed chain heads for the current round. It attempts to notarize
exactly one chain head for each round but does not guarantee that.
Therefore, notarization does not imply consensus nor does it require
consensus.

When participating in the notarization protocol the replicas are
only concerned about extending at least one valid chain, not about
which chain wins (which is the subject of the finalization in § 6).

Definition 5.5. A notarization of block B is an aggregated signa-
ture by a majority subset of U on the message B. We call a block
signed if it has received at least one signature and notarized if it has
received a notarization. A notarized block is a block concatenated
with a notarization of itself.

As described in Alg. 1 below, each replica in each round r collects

a fixed time frame, the so-called BlockTime. A proposed block B is
considered valid for round r if rdB = r and there is a valid block
B′

all valid block proposals from all replicas (including from itself) for

such that
(1) prvB = H (B′) and rdB′ = rdB − 1,
(2) ntB is a notarization of B′,
(3) datB is valid.7

After BlockTime, the replica signs all highest priority blocks for
the current round that it has received and broadcasts a signature
message for this block to the entire network.

More than one block can have the highest priority but only if
the block maker has equivocated. In this case all equivocated block
proposals will get signed. This is not an issue because each honest
block makers in the next round will only build on one of the blocks.
7 Having a validity criteria for dat B is optional and not required for the consensus
protocol. Depending on the application of the blockchain, for example, dat B can be
configured to be valid only if dat B represents valid transactions and a valid state
transition from dat B′. From the perspective of the consensus protocol dat B is arbitrary
data.

6

The replica continues to sign all highest priority block proposals
as it receives more block proposals after BlockTime. When a nota-
rization for the current round has been observed then the replica
advances to the next round.

Algorithm 1 – Block Notarization

Goal: Notarize at least one block for the current round.

1: Initialize chain with the genesis block
2: r ← 1
3: while true

▷ initialize round number
do

Wait(BlockTime)
while no notarization for round r received do

B ← set of all valid round-r block proposals so far
for All B ∈ B with minimal rkB do

if B not already signed then

σ ← Sign(B)
Broadcast(σ)

4:
5:
6:
7:
8:
9:
10:
11:
12:
13:

end if

14:

end for

end while

r ← r + 1
15: end while

5.4 Properties of notarization

5.4.1 Liveness. From the description above it should be clear
that Algorithm 1 cannot deadlock – even in the presence of an
adversary. The fact that each replica continues to sign the highest
priority block proposal until a notarization for the current round is
observed is sufficient to ensure that at least one block gets notarized
in the current round. Eventually this will happen because (5.1) holds
and the ranking establishes a well-ordering on the set of block
proposals. After observing the first notarization for the current
round it is safe to stop signing because the observed notarization is
being re-broadcasted and will eventually reach all honest replicas.
Thus, all honest replicas will advance to the next round.

The above argument relies on propagation assumptions for block
proposals and notarizations. We will analyze these in detail, includ-
ing the relay policies involved, and provide a formal proof for
liveness in § 9.

5.4.2 Honestly signed blocks.

Definition 5.6. A block is called honestly signed if it has received
at least one signature from an honest replica.

Note that an honest replica i only issues a signature on a block
B if B was the highest priority proposal visible to i at some point
in the round after BlockTime expired. The concept of honestly
signed blocks is a theoretical one, used to argue about the security
properties of the notarization protocol. It is not possible to tell if
a given signature was issued by an honest or Byzantine replica.
Hence it is not observable whether a signed block is an honestly
signed block or not.

Definition 5.7. An artifact of round r was timely published (within
d rounds) if it was broadcasted while at least one honest replica
was in round ≤ r (resp. in round ≤ r + d

5.4.3 Timely publication.

).

As a rule, honest replicas re-broadcast every block that they sign.
Hence,

Only timely published blocks can be honestly signed. (5.2)

Given a signed block, it is not possible to tell whether the block
was timely published or not because it is not possible to tell if the
signature was honest or not. This is different for notarized blocks
as we will explain next.

5.4.4 Notarization withholding. By (5.1), any majority subset of
replicas contains at least one honest replica. Thus, we have:

Only honestly signed blocks can get notarized. (5.3)

We emphasize that an adversary can withhold its own signatures
under an honestly signed block which can lead to a situation where
an honestly signed block does not appear to be notarized to the pub-
lic. However, the adversary can use its own signatures to produce
and reveal a notarization at any later point in time.

5.4.5 Enforcing publication. By (5.3) and (5.2),

Only timely published block proposals can get
notarized.

(5.4)

However, despite (5.4), notarizations can be withheld. To show
that withholding notarizations is harmless we introduce another
theoretical concept:

Definition 5.8. A notarization z is referenced if there is a notarized
block B with ntB = z.

Note that publishing a block, B, implicitly publishes the nota-
rization of the previous block, ntB, because ntB is contained in B.
Hence, (5.4) implies

Only notarizations that are timely published within 1
round can get referenced.

(5.5)

Obviously, in a surviving chain all notarizations are referenced.
Thus, the publication of both block proposals and notarizations
is enforced. An adversary cannot build a private chain because a
chain can only survive if:

• All its blocks were timely published.
• All its notarizations were timely published within 1 round.

5.4.6 Consensus. We stated above that a chain can only survive
if all its notarizations were timely published within 1 round. This
means a replica looking at the notarizations of round r can restrict
itself to a certain time window. All notarizations for round r re-
ceived after that window are necessarily irrelevant for the surviving
chains. This fact is the key to the finalization algorithm in § 6 below.
See Figure 7 for an example.

There are multiple ways that this fact can lead to a consensus
point. Note that it is not necessary for consensus that a single block
gets notarized in a round, nor that a single notarization can get
referenced. It is sufficient for a consensus point that all notarizations
that were received within the time window (indirectly) reference
the same block one (or more) rounds back.

7

5.4.7 Normal operation.

Definition 5.9. A round has normal operation if only one block
for that round gets notarized.

Algorithm 1 strives to achieve normal operation by enforcing the
BlockTime waiting period, and by giving preference to the highest
priority block proposal.

If the highest priority block maker is honest and BlockTime is
large enough then the highest priority block proposal will arrive at
all honest replicas before BlockTime expires. This means that only
one block can get notarized in this round. Hence, assuming that
BlockTime is chosen correctly, Algorithm 1 will achieve normal
operation in every round in which the highest priority block maker
is honest.

We will analyze in detail what it means that BlockTime is "large
enough" (see § 9), taking into account the inner workings of the
broadcast network such as the relay policy. We will show that if
the network traversal time is bounded by ∆ then Alg. 1 is correct if
BlockTime ≥ 3∆ (Cor. 9.16, Prop. 9.24, Prop. 9.27).

Note that every round with normal operation creates consensus
on the unique block notarized in that round. However, normal
operation is a theoretical concept that cannot be observed due to
the possibility of notarization withholding. Luckily, as we saw in
§ 5.4.6, normal operation is not necessary for consensus.

6 FINALIZATION

Replicas use the finalization procedure described in Alg. 2 to identify
points of consensus. For this process, it suffices to observe only
the notarized blocks, i.e. block proposals and individual signatures
under block proposals can be ignored. The finalization protocol
is passive and independent from the notarization protocol. Since
it can be carried out by anyone (outside of the replicas) who has
access to the notarized blocks, we speak of observers in this section
rather than of replicas.

6.1 Description

Algorithm 2 makes the assumption that the observer receives all
round-(r − 1) notarizations that can get referenced before time
T after having received the first notarization for round r . This
assumption is equivalent to the correctness of Alg. 2 and is proved
for all replicas in Theorem 9.18.

The general idea of Alg. 2 is as follows: We continuously collect
all notarized blocks and bucket them according to their round
number. Let Nr be the bucket for all notarized blocks for round r .

Multiple buckets can be filled concurrently. For example, a second
block may go intoNr even whenNr+1 is already non-empty. How-
ever, a block cannot be validated without knowing its predecessor.
Therefore, we assume that for every pair of blocks that reference
each other, the predecessor is processed first. As a consequenceNr
must receive its first element beforeNr+1 does.

By our initial assumption, for each round r , there is a time when
we can rule out the receipt of any further notarized blocks forNr
that can get referenced. At that time we "finalize" round r because
we know that Nr already contains all chain tips that can possi-
bly survive beyond round r . Therefore, we can output the longest
common prefix C(Nr) as being final.

Algorithm 2 – Finalization

Goal: Build the finalized chain from observing notarized

blocks.

Main:
1: Ni ← ∅ for all i
2: N0 ← {B0}
3: C ← (B0)
4: r ← 1
5: while true

▷ Empty buckets for notarized blocks
▷ Consider genesis block "notarized"

▷ Finalized chain
▷ Current round

do

while Nr = ∅ do6:
7:
8:
9:
10:
11:

B ← incoming notarized block
Store B in Nrd B

end while

Schedule the call Finalize(r − 1) at time T from now
r ← r + 1

12: end while

Finalize(h):
1: if h > 0 then

C ← C(Nh2:)

3: end if

r − 3 r − 2 r − 1 r

0

1

2

FIN
AL

DE
AD

DE
AD

FIN
AL

DE
AD

Figure 7: Finalizing blocks. The diagram shows a view of notarized

blocks at timeT after first seeing a notarized block for round r (i.e. at
time T after ending round r and beginning round r + 1). According
to the correctness assumption, (6.1), no additional blocks that receive
an inbound arrow can appear for the empty positions on the left of

the vertical dashed line. Therefore, we mark positions (r − 2, 2) and
(r−1, 0)with a cross. The Finalize(r−1) procedure outputs the longest
common prefix, marked "FINAL", of all chains defined by blocks from

round r − 1 as their chain tips. As a consequence the blocks marked

"DEAD" are now excluded from ever becoming final.

6.2 Properties of Finalization

We emphasize that there are some notable differences between the
use of BlockTime and T : BlockTime is agreed upon and part of the
protocol specification, whereas each observer can specify its own
T . The notarization protocol requires only BlockTime, not T . The
finalization protocol requires only T , not BlockTime.

The following assumption about Alg. 2 is called the correctness
assumption:

At the time when Finalize(h) is being executed, Nh
contains all round-h blocks that can get referenced.

(6.1)

8

Proposition 6.1. Suppose (6.1) holds. Then the chain C in Alg. 2

is append-only.

The assertion justifies to call the chainC in Alg. 2 finalized.

Proof. LetCh ,Ch+1 be the chains returned by Finalize(h) and
tFinalize(h + 1), respectively, in an execution of Alg. 2. Let Nh

tdenote the setNh at time t . Obviously,Nh can growwith increasing
t . Let t0, t1 be the times when Finalize(h), Finalize(h+1) are called,
respectively. By (6.1), none of the blocks added toNh after t0 can get

0 regardlesstreferenced. In other words, we have prv(Nh+1) ⊆ Nh
of the time at which Nh+1 is considered. Thus,

tCh = C(Nh
t0) ≤ C(prv(N 1
h

(4.5) t1
+1)) ≤ C(Nh+1) = Ch+1.

□

We will show that if the network traversal time is bounded by ∆
then (6.1) holds ifT ≥ 2∆ (Thm. 9.18, Prop. 9.25). Notably, this result
does not make any assumptions about BlockTime, i.e. the result
holds even if the notaries choose an incorrect value for BlockTime.

There is alternative version of Alg. 2 which does not require the
parameter T . In line 10, instead of calling Finalize(r − 1) at time T
from now, the alternative calls Finalize(r − 2) immediately. This
can also guarantee (6.1) according to Cor. 9.19 but it requires an
assumption about the value of BlockTime used by the notaries.

7 DECENTRALIZED RANDOMNESS BEACON

The decentralized random beacon protocol (DRB) allows replicas to
agree on a verifiable random function (VRF) and to jointly produce
one new output of the VRF in every round. By a VRF we mean a
commitment to a deterministic, pseudo-random sequence (ξr)r ≥0
for which each output ξr is unpredictable given the knowledge
of all prior outputs ξ0, . . . , ξr−1 and for which each output ξr is
verifiable for correctness by anyone against the commitment. In
particular, the VRF outputs are unbiasable due to their deterministic
pseudo-random nature. In our decentralized protocol, the output ξr
shall not be predictable by the adversary before at least one honest
replica has advanced to round r .

Regarding the threat model, we assume (4.2) for all groups, as
stated in Assumption 2. For simplicity of exposition we describe
the random beacon protocol for a single groupG with |G | = n and
n > 2f (G). The protocol can then be adapted to be executed by
changing groups as described in § 8.1 below.

Our DRB protocol uses unique t-of-n threshold signatures (see
§ 7.1) created by the group G as the source of randomness. The
adversary cannot predict the outcome of such a signature if f ≤ t−1
and cannot prevent its creation if f ≤ n − t . If the adversary could
abort the protocol by preventing a signature from being created,
then any restart or fallback mechanism would inevitably introduce
bias into the output sequence.8 We treat the two failures (predicting
and aborting) equally. Therefore we require t ∈ [f + 1,n − f]. Note

that if we set n = 2t − 1 then both conditions are equivalent to
f ≤ t − 1

8 Several existing proposals in the literature are susceptible to bias due to a single party
aborting the protocol. For example Algorand [8, § 5.2] describes a fallback mechanism
which inevitably introduces bias. RANDAO [1] relies on game-theoretic incentives to
keep malicious actors from aborting the protocol. In practice, however, the gain for a
malicious actor from biasing the randomness is unbounded whereas the penalty for
aborting is bounded.

.
The threshold signature scheme used in the DRB protocol is

set up using a distributed key generation mechanism (see 7.1.4)
which does not rely on trusted parties. We start by providing the
background information on threshold cryptography that we use.

7.1 Background on Threshold Cryptography

7.1.1 Threshold Signatures. In a (t ,n)-threshold signature scheme,
n parties jointly set up a public key (the group public key) and each
party retains an individual secret (the secret key share). After this
setup, t out of the n parties are required and sufficient for creating
a signature (the group signature) that validates against the group
public key.

7.1.2 Non-interactiveness. A threshold signature scheme is called
non-interactive if the process of creating the group signature in-
volves only a single round of one-way communication for each of
the t participating parties. Typically in a non-interactive scheme,
each participating party creates a signature share using its indi-
vidual secret and sends this signature share to a third party. Once
the third party has received t valid shares it can recover the group
signature without any further interaction. For example, ECDSA can
be turned into a threshold signature scheme ([6]) but it does not
have the property of non-interactivity.

7.1.3 Uniqueness. A signature scheme is called unique if for
every message and every public key there is only one signature
that validates successfully. This property applies to single signa-
ture schemes and threshold signature schemes alike. But in the
setting of a threshold scheme it has the additional requirement
that the signature must not depend on the subset of t parties that
participated in creating the signature. In other words, in a unique
threshold signature scheme, regardless of who signs, the resulting
group signature will always be the same.

"Unique" is a property that is strictly stronger than "determinis-
tic". A signature scheme is called deterministic if the signing function
does not use randomness. Note that "unique" is a property of the
verification function whereas "deterministic" is a property of the
signing function. Unique implies deterministic but not conversely.
For example, DSA and ECDSA can be made deterministic by re-
defining the signing function in a way that it derives its so-called
"random k-value" deterministically via a cryptographic hash func-
tion from the message plus the secret key instead of choosing it
randomly. However, this technique cannot be used to make DSA
or ECDSA unique because one cannot expose the k-value to the
verification function.

7.1.4 Distributed Key Generation (DKG). For a given (t ,n)-thres-
hold signature scheme, a DKG protocol allows a set of n parties
to collectively generate the keys required for the scheme (i.e. the
group public key and the individual secret key shares) without the
help of a trusted party.

Note that a DKG protocol is more than a secret sharing protocol.
In a secret sharing protocol the secret shares can be used to recover
the group secret, but this can be done only once. After everyone

9

has learned the group secret the shares are not reusable. In a DKG
the shares can be used repeatedly for an unlimited number of group
signatures without ever recovering the group secret key explicitly.

DKG protocols are relatively straight-forward for discrete-log
based cryptosystems and typically utilize multiple instances of a
verifiable secret sharing protocol (VSS). Dfinity uses the "Joint-
Feldman DKG"9 as described in [7].

7.2 The BLS signature scheme

The only known signature schemes that have a unique, non-interactive
threshold version and allow for a practical, efficient DKG are the
pairing-based schemes derived from BLS [3]. BLS was introduced
by Boneh, Lynn, and Shacham in 2003 and related work can be
found in [10]. We shall use the original BLS scheme throughout.

7.2.1 BLS functions. Assumingwe have generated a secret/public
key pair (sk, pk), BLS provides the following functions:

(1) Sign(m, sk): Signs messagem using secret key sk and re-
turns signature σ .

(2) Verify(m, pk,σ): Verifies the signature σ for message m
against the public key pk and returns true or false.

Under the hood, BLS uses a non-degenerate, bilinear pairing

e : G1 × G2 → GT

between cyclic subgroups G1,G2 of suitable elliptic curves points
with values in a group of units GT . We shall write all groups multi-
plicatively in this paper. For each group, we fix an arbitrary gener-
ator: д1 ∈ G1, д2 ∈ G2, дT ∈ GT . We also assume a hash function
H1 : {0, 1}∗ → G1 with values in G1.

The secret keys are scalars, the public keys are elements of G2
and the signatures are elements of G1. The function Sign(m, sk)
computes H1(m)sk and Verify(m, pk,σ) tests whether e(σ ,д2) =
e(H1(m), pk).

7.2.2 Threshold BLS. We refer to the threshold version of BLS as
TBLS. The same functions Sign and Verify that are defined for BLS
also apply to the key/signature shares and group keys/signatures
in TBLS. We assume all participating parties in the (t ,n)-DKG are
numbered 1, . . . ,n. After having run the DKG as in 7.1.4, the (t ,n)-
TBLS provides additionally the function:

(1) Recover(i1, . . . , it ,σi1 , . . . ,σit): Recover the group signa-
ture σ from the signature shares σi j , j = 1, . . . , t , where
σi j is provided by the party i j ∈ {1, . . . ,n}.

Because of the uniqueness property, the output of Recover does
not depend on which t shares from the group are used as inputs.
Recover computes a "Lagrange interpolation" for points in G1. The
indices i1, . . . , it must be pairwise different for theRecover function
to succeed.

7.3 Randomness Generation

The randomness generation consists of a) a one-time setup in which
a DKG is run and b) a repeated signing process in which the outputs

are produced. The DKG is slow and requires agreement whereas

9 It is known from [6] that the adversary can bias the distribution of public keys
generated by the Joint-Feldman DKG. However, the bias generally does not weaken
the hardness of the DLP for the produced public key ([6, § 5]). Therefore, with the
simplicity of our protocol in mind, we use the original, unmodified Joint-Feldman DKG
even though variations are available that avoid the bias.

the repeated signing is non-interactive and fast.

7.3.1 Setup. When setting up a threshold signature scheme, we
do not want to rely on any trusted third party. Therefore, the group
G runs a DKG for BLS to set up the group public key and the secret
key shares during the initialization of the blockchain system. The
threshold t is a parameter of the setup.

Once the DKG has finished successfully, it outputs a public ver-
ification vector VG ∈ Gt2, and leaves each replica i ∈ G with its
secret key share skG,i . The verification vector VG gets committed
to and recorded in the blockchain, for example in the genesis block.

LetVG = (v0, . . . ,vt−1). The group public key is pkG = v0 ∈ G2.
The secret key skG corresponding to pkG is not known explicitly
to anyone inG but can be used implicitly through skG,i . The ver-
ification vector VG can be used to recover the public key share
pkG,i ∈ G2 corresponding to skG,i via “polynomial” substitution

t−1

k=0

k
pkG,i =

∏
vk ∈ G2.
i

Hence, all signature shares produced by i can be publicly verified
against the information VG and i . The group public key pkG can
be used to verify the output of Recover.

7.3.2 Signing process. Recall that a replica enters round r upon
seeing the first notarization for round r − 1. At the beginning of its
round r , replica i ∈ G computes the signature share

σr,i = Sign(r ∥ ξr−1, skG,i),

where ξr−1 is the random value of round r − 1. To bootstrap, ξ0 has
been set to a nothing-up-my-sleeve number, e.g. the hash of the
string “Dfinity”. Replica i then broadcasts (i,σr,i).

Any replica who receives this data can validate (i,σr,i) against
the public information VG as described in 7.3.1 above. If valid
then the replica stores and re-broadcasts (i,σr,i). As soon as a
replica has received at least t different valid signature shares, it
runs Recover(i1, . . . , it ,σr,i1 , . . . ,σr,it) to compute the group sig-
nature σG,r . Finally, the random output ξr for round r is computed
as the hash of σG,r .

We emphasize that the signing process is non-interactive. Any
third party can do the recovery after a one-way communication of
sufficiently many shares.

8 SCALABILITY

8.1 Threshold Relay

For reasons of scalability the notarization and random beacon pro-
tocols from § 5 and § 7 are executed by groups of size n rather than
by all replicas inU . Otherwise the message complexity would be
unbounded as the total number of replicas grows.

The groups, also called committees here, are random samples of
size n from the whole populationU . The group size n is a system
parameter that is chosen according to the failure probability anal-
ysis of § 4.2.4. A large enough group size ensures that – up to an
acceptable failure probability – every group used in the system is
honest (Assumption 2).

The mechanism by which Dfinity randomly samples replicas
into groups, sets the groups up for threshold operation, chooses

10

the current committee, and relays from one committee to the next
is called threshold relay.

8.1.1 Group Derivation. Let n be the group size. The groups are
derived from a random seed ξ where the j-th derived group is

Group(ξ , j) := PermU (PRG(ξ , j))({1, . . . ,n}). (8.1)

At the start of the system, we choose a numberm and a seed ξ
and form groups

G j := Group(ξ , j), j = 1, . . . ,m. (8.2)

EachG j runs the DKG described in Section 7.3 to create group keys
pkG j

which are then stored in the genesis block.

8.1.2 Committee Selection. The sequence (ξi) is bootstrapped
by defining an initial value for ξ0. Then, in round r , we choose

G(r) := G j , j := ξr mod m (8.3)

as the committee for round r . The same committee can be used
for the notarization and the random beacon protocols of the same
round.

In the random beacon protocol, the members ofG(r) jointly pro-
duce the output ξr , which is then used to select the next committee
G(r+1). Since activity is relayed from one group to the next, we call
the mechanism "threshold relay".

8.2 Open Participation

It is impractical to assume that the set of all replicas is known from
the start of the protocol, especially in Dfinity’s public chain. This
section describes how the protocol adopts an open participation
model in which new replicas can join and existing replicas can leave
the system.

8.2.1 Epochs. Wedivide the rounds into non-overlapping epochs
of length l where l is a system parameter and is fixed. The block
produced in the first round of each epoch is a registry block (also
called key frame) and contains a summary of all new registrations
and de-registrations of replicas that happened during the previous
epoch that just ended. Note that the summary is a deterministic
result of all the blocks in the preceding epoch so that the block
maker of the key frame has no opportunity to censor registrations.
The first round of the very first epoch is DFINITY’s genesis block
which is also a key frame.

8.2.2 Registration of Replicas. A replica can request to join the
network (i.e. register) or leave the network (i.e. de-register) by sub-
mitting a special transaction for that purpose. The transaction is
submitted to the existing replicas for inclusion in the chain just
like any other user transaction. A registration transaction contains
the public key of the new replica plus an endorsement proving that
it was allowed to form. Depending on the underlying Sybil resis-
tance method, the endorsement is, e.g., the proof of a locked-up
stake deposit, the solution to a proof-of-work puzzle tower, or the
certification by a central, trusted authority.

Let r be the first round of epoch e . For each j ≤ mmax the j-
th candidate group is defined as G = Group(ξr , j). The members
of G run a DKG to establish a group public key pkG . If the DKG
succeeds then the members create a registration transaction for
G which contains the tuple x = (e, j, pkG). After x is signed by a
super-majority of G, any member can submit x for inclusion in
the blockchain. The validity of the signature under x is publicly
verifiable against the information already on the blockchain, i.e.,
the poolU of active replicas and the random beacon output ξr that
defined the group. A registration transaction x is only valid if it is
included in a block that lies within the epoch e

8.2.3 Registration of Groups. The random beacon output of the
first round in an epoch e defines the composition of all the groups
that are allowed to newly enter the system during this epoch. A
system parameter,mmax, governs how many different groups can
form during an epoch.

.
If the DKG fails or x fails to get a super-majority signature from

G or x is not included in the blockchain within epoch e then G
cannot register. An adversary can cause the registration to fail. For
example, if the super-majority is defined as a 2/3-majority then an
adversary controlling ≥ 1/3 of G can deny the signature under x .
However, due to variance, this will happen only to some of the
group candidates. For example, an adversary controlling < 1/3 ofU
will control < 1/3 in at least half of all groups.

Groups are de-registered automatically when they expire after a
fixed number of epochs defined by a system parameter.

8.2.4 Delayed Activity. If the registration of a new identity
(replica or group) is included in the chain in epoch e , then the
newly registered entity becomes active in epoch e + 2. Thus, there
is always a gap of at least l rounds between the registration of a
new entity and the first activity of that new entity. This sequence
of events is shown in Fig. 8.

The gap is required to ensure that all registrations of new entities
are finalized before they can be allowed to have any influence on the
random beacon. The minimum value of l can be derived from the
growth property of the finalized chain that is proved in Prop. 9.24
below.

Dfinity uses a value for l that is far greater than the minimum
required, because we want to limit the rate at which key frames
are produced, in order to reduce load on so-called observing "light
clients".

9 SECURITY ANALYSIS

In this section, we show that the Dfinity protocol provides us with
a robust and fast distributed public ledger abstraction. Any ledger
must satisfy the following two fundamental properties which we
will derive from lower-level properties in § 9.4.

Definition 9.1 (Ledger properties).

a) Persistence. Once a transaction is included into the finalized
chain of one honest replica, it will then be included in every
honest replica’s finalized chain.

b) Liveness. All transactions originating from honest parties will
eventually be included in the finalized chain.

What distinguishes Dfinity from other ledgers is the property
of near-instant finality. This property is formalized by the following
two definitions and theorem.

Definition 9.2 (Number of Confirmations). We say a transaction
has n confirmations if it is contained in a notarized block Br and
there is a chain of notarized blocks of the form (. . . ,Br , . . . ,Br+n−1).

11

Key Frame
Block

Key Frame
Block

Key Frame
Block

Key Frame
Block

e − 3 e − 2 e − 1 e

Chain Head

Join tx
Group

0x2b197453

Activation
Group

0x2b197453
Client

0x6e22e1

Join tx
Client

0x6e22e1ba

ba

Figure 8: Epochs and Registration. The chain is divided into epochs defined by the round numbers of the blocks. A client joins by submitting a special transaction

into a block which also locks up a stake deposit. A group joins by successfully executing a DKG (distributed key generation) and submitting the result as a join

transaction into the blockchain. Clients and groups become actively involved in the protocol only after a gap of at least 1 epoch between their join transaction

and their first activity.

Note that the definition refers to any notarized blocks known to
the replica, not necessarily finalized blocks.

Theorem 9.3 (Main Theorem). Under normal operation in round

r , every transaction included in a block for round r is final after two
confirmations plus the maximum network roundtrip time 2∆.

From the perspective of an arbitrary observer, the Main Theorem
means the following. Suppose an observer sees a transaction x that
has received two confirmations, i.e. a notarized block Br for round r
containing x and another notarized block Br+1 with prvBr+1 = Br .
If round r experienced normal operation then, at time 2∆ after
the observer received the notarization for Br+1, the finalization
algorithm (Alg. 2) is guaranteed to append Br to the observer’s final
chain. We assume here that T in Alg. 2 is set to 2∆. The proof of
the Main Theorem will occupy § 9.3 below.

We will provide proofs for the synchronous model where an
upper bound for the network traversal time ∆ is known. We assume
that processing times for messages are included in the network
traversal time.

9.1 Broadcast and Processing

The security analysis must take into account the behavior of the
broadcast network, which implements a gossip protocol. In par-
ticular, the relay policy that is applied to gossiping is going to be
essential for the provability of our results.

Replicas continuously receive new protocol artifacts, e.g. block
proposals, signatures under block proposals, notarizations, nota-
rized blocks or random beacon outputs. As soon as an artifact is
determined to be valid it is immediately relayed ("gossiped") to the
replica’s peers if it falls under the relay policy defined below.

Definition 9.4 (Relay Policy). All honest replicas relay the follow-
ing artifacts
a) for the current round: valid block proposals and valid signatures

under block proposals,
b) for any round: notarizations and notarized blocks.
We say an artifact has saturated the network if it has been received
by all honest replicas.

replicas cannot observe whether an artifact has saturated the net-
work or not. Saturating the network does not constitute a reliable

We emphasize that saturating the network is a global condition
that is only of theoretical value in our security arguments. The

broadcast.
Artifacts can be received out of order, e.g. a signature or a nota-

rization for a block can be received before the block. If an artifact
x is received before an artifact that is referenced by x then x can
not be validated. For this reason, all honest replicas first queue any
incoming artifact x until all artifacts referenced by x have also been
received. Only then is x processed. In particular, an honest replica
i relays an artifact x only if it possesses all artifacts referenced by
x . Hence, a peer j of i who receives x from i can then request any
artifact that is referenced by x that j does not already possess. This
is an artifact synchronization process which happens transparently
in the background and is completed before j processes x . Therefore,
throughout the paper, we take for granted that if an artifact x is
received then all artifacts referenced by x have also been received.

Signatures under block proposals are collected in a background
process and, once a majority is available for a given block proposal,
are aggregated into a notarization which is then treated in the
same way as if it was received from outside. Block proposals and
notarizations are collected in the background and made available
to Alg. 1 and 2.

Our relay policy and network assumptions (see § 9.2.1 below)
guarantee the following property:

Any artifact that falls under b) and is processed by an
honest replica will eventually saturate the network.

(9.1)

Property (9.1) does not hold for artifacts relayed under policy a)
because a replica in the middle of the broadcast path may have
advanced to the next round in which case the artifact will be con-
sidered old and will be dropped.

Suppose an honest replica i has processed a block proposal B and
considered it valid. Then i must possess prvB and a notarization
of prvB. We emphasize that the honest replica i re-broadcasts the
notarized block prvB in this case. By (9.1), this behavior guarantees:

If a block B is honestly signed then the notarized block
prvB eventually saturates the network.

(9.2)

Property (9.2) does not hold for B itself or for individual signatures
under B, for these artifacts do not fall into category b) of Def. 9.4.

12

9.2 Timing and Progress

This section makes statements about the relative timing of events
that happen at different replicas. We do not assume normal opera-
tion in any round and therefore have to consider the possibility of

′multiple notarizations zr , zr , . . . being created and broadcasted for
the same round r .

9.2.1 Preliminaries. We assume that a message broadcasted by
an honest replica at time t reaches every honest replica before t +∆
(i.e. at a time < t +∆). Since processing times are not in the scope of
our analysis, we assume all processing times to be zero. This applies
to the creation as well as to the validation of all messages including
block proposals, signatures, notarizations, random beacon shares,
and random beacon outputs. As a consequence, for example, when
a replica i receives a random beacon output ξr at time t then it
broadcasts its block proposal for round r at the same time t . Or,
when a random beacon member i receives a notarization zr for
round r at time t then i broadcasts its random beacon share for
round r + 1 immediately at the same time t .

Definition 9.5. Let τi (A) denote the time at which replica i sees
eventAwhereA is one of the following: a random beacon output ξr ,
a block proposal Br , or a notarization zr . We set τi (r) := τi (zr−1)
where zr−1 is the first notarization for round r − 1 that i receives.

Thus, τi (r) is the time when replica i enters round r . To study
when the first honest or last honest replica sees an event, we define:

Definition 9.6.

¯
τ (A) := min τi (A)

i honest
, τ̄ (A) := max τi (A)

i honest
.

For example, τ (r) is the time when the first honest replica enters
round r and τ̄ (r)̄ is the time when the last honest replica enters
round r . Finally, it is also of interest when an event can first be seen
or constructed by the adversary. Therefore, we define:

Definition 9.7.

¯
τ ∗(A) := minτi (A)

i
.

For example, τ ∗(ξr)¯
is the earliest time that the adversary can

construct the random beacon output ξr .
We will prove in Cor. 9.16 below that the protocol makes contin-

uous progress, i.e. that all values τi (r) are finite. As the reader may
verify, the statements made in this section up until Cor. 9.16 also
hold (trivially) in the case that any of the values τi (A) are infinite.

Lemma 9.8. For all rounds r we have:

τ̄ (r) ≤ τ (r) + ∆ (9.3)
¯

and, for any round-r event A under Def. 9.4a),

¯ ¯

τ (A) + ∆ ≤ τ (r + 1) =⇒ τ̄ (A) ≤ τ (A) +
¯

∆ (9.4)

Proof. Let i be an honest replica and let zr−1 be a notarization
for round r − 1 such that τi (zr−1) = τ (r). By Def. 9.4b), zr−1¯

is
relayed across the network and reaches any other honest replica j
by τi (r) + ∆. This proves (9.3).

Now let A be any event that falls under the relay policy in

¯
Def. 9.4a) for round r . If τ (A) + ∆ ≤ τ (r + 1)

¯
then the same ar-

gument applies. Indeed, the assumption means that all replicas
along the broadcast path will still be in round r , thus will relay A
according to Def. 9.4a). This proves (9.4). □

9.2.2 Maximal Progress.

Lemma 9.9 (Notarization, "Fast" Bound). For all rounds r we
have:

¯

τ (r) + BlockTime ≤ τ ∗(r + 1)
¯

. (9.5)

Proof. Honest replicas participate in a notarization zr for round
r only after they have been in round r for at least BlockTime
(cf. Alg. 1). The inequality (9.5) means that at least one honest
replica is required before anyone can see a notarization zr for
round r . □

Proposition 9.10 (Maximal Progress). Suppose BlockTime ≥
∆. Then the round number of any honest replica increases at most

every BlockTime − ∆. Moreover, at any point in time, the difference

between the round numbers of two honest replicas can be at most 1.

Proof. From (9.3) and (9.5) together we get:

τ̄ (r) + (BlockTime − ∆) ≤ τ ∗(r + 1)
¯

.

This implies both statements. □

Corollary 9.11 (Safe Broadcast). Suppose BlockTime ≥ ∆.
For all rounds r and any round-r event A under Def. 9.4a) we have:

¯ ¯

τ (A) ≤ τ (r) + (BlockTime − ∆) =⇒ τ̄ (A) ≤ τ (r) + BlockTime
¯

.

(9.6)

The interpretation is that if a round-r event is broadcasted by
τ (r)+(BlockTime−∆)
¯

then it is guaranteed to saturate the network,
and this happens by τ (r) + BlockTime

¯
.

¯
Proof. From τ (A) ≤ τ (r) + (BlockTime − ∆)

¯
we conclude

¯
(9.5)

τ (A) + ∆ ≤ τ (r) + BlockTime ≤ τ (r + 1)
¯

.
¯

Thus, by (9.4),

¯
τ̄ (A) ≤ τ (A) + ∆ ≤ τ (r) + BlockTime

¯
.

□

9.2.3 Normal Operation.

Lemma 9.12 (Beacon, "Slow" Bound). For all rounds r we have:

τ̄ (ξr) ≤ τ (r) + 2∆
¯

(9.7)

Proof. Each honest random beacon member i broadcasts its
random beacon share for ξr at τi (r) (cf. § 7.3.2). Thus, any other
honest replica will receive all honest random beacon shares for ξr
by τ̄ (r) + ∆ and thus will recover ξr by that time, i.e.

τ̄ (ξr) ≤ τ̄ (r) + ∆.

The assertion follows after applying (9.3). □

We now assume BlockTime ≥ 3∆ for the rest of the subsection.
The timing of events with BlockTime = 3∆ is illustrated in Fig. 9.

Lemma 9.13 (Block, "Slow" Bound). Suppose BlockTime ≥ 3∆.
For each round r and each honest block proposal Br we have:

τ̄ (Br) ≤ τ (r) + BlockTime
¯

. (9.8)
13

Replica i

Random Beacon

Block Makers

Replica j

BlockTime = 3∆

i starts the waiting
period of Alg. 1

i is ready to
sign

τ (r) = τi (r)
∆

¯
∆ ∆

zr−1
zr−1z

r
−1

ξ r

ξr
ξr

B r

Br

Figure 9: Events Timings. Let replica i be the first honest replica to

enter round r , at time τi (r) = τ (r), upon receipt (or construction) of

a notarization zr−1 for round r¯ − 1. Let j be any other honest replica

for illustration. Replica i broadcasts zr−1 to everyone where it arrives
before τ (r) + ∆. Thus, all honest replicas start their round r

¯

before

τ (r) + ∆. Immediately after starting round r , all honest random bea-

¯
con members create and broadcast their random beacon share to ev-

eryone where it arrives before τ (r) + 2∆
¯

. Immediately after receiving

ξr , each honest block maker broadcasts its block proposals Br to ev-

eryone where it arrives before τ (r)+ 3∆. Replica i finishes its waiting
period at τi (r)+BlockTime = τ¯r)+3∆

¯

(and proceeds to sign the highest

priority proposal Br in its view. Replica j finishes its waiting period

later, at τj (r) + BlockTime, and does the same.

Proof. Since Br is proposed by an honest replica i , it is broad-
casted immediately when i receives ξr . (Note that we generally
ignore processing times throughout the section, including the block
creation time.) This means τ (Br) ≤ τ̄ (ξr)¯

, hence

¯
(9.7)

¯
τ (Br) ≤ τ̄ (ξr) ≤ τ (r) + 2∆ ≤ τ (r) + (BlockTime − ∆)

¯
.

The assertion follows from Cor. 9.11 for A = Br . □

Proposition 9.14 (Normal Operation). Suppose BlockTime ≥
3∆. If the highest priority replica in round r is honest, then round r
has normal operation.

Proof. Let i be the highest priority replica of round r and sup-
pose i is honest. Then i proposes exactly one block Br for round r .
Lemma 9.13 implies that for each honest notary member j we have
τj (Br) ≤ τj (r) + BlockTime. By Alg. 1, replica j waits BlockTime
after entering round r and then signs Br and only Br because Br ’s
proposer i has the highest possible priority.

Since notarization requires the participation of at least one hon-
est replica, and all honest replicas sign only Br , Br is the only block
that can possibly get notarized. In other words, round r can only be
ended by a notarization of Br , which guarantees that the signatures
under Br saturate the network and Br indeed gets notarized. □

9.2.4 Minimal Progress.

Proposition 9.15 (Minimal Progress). Suppose BlockTime ≥
3∆. Suppose that in a given round r the replica i with πr (i) = d is

honest. Then

¯

Proof. Set x0 := τ (r) + BlockTime. Let Br

τ (r + 1) ≤ τ (r) + BlockTime + (d + 2)∆
¯

. (9.9)

¯
be the unique pro-

posal made by i for round r . By Lemma 9.13, all honest notary
members receive Br by time x0.

For each time x ≥ x0, we consider the set Sx of valid block
proposals for round r that have been received by at least one honest
replica. More formally, Sx consists of those valid round-r proposals
B that satisfy τ (B) ≤ x . For example, Br ∈ Sx0¯

. We then define

f (x) := min{rkB | B ∈ Sx }.

For example, f (x0) ≤ d because Br has rank d .
Forx ≥ x0, the function f has values in the non-negative integers

and is monotonically decreasing. Since f (x0) ≤ d , it follows that
there is a time x0 ≤ x1 ≤ x0 + d∆ such that f (x1) = f (x1 + ∆).
(Otherwise, if f (x + ∆) ≤ f (x) − 1 for all x0 ≤ x ≤ x0 + d∆ then
f (x0 + (d + 1)∆) < 0, a contradiction.)

We claim τ (r + 1) ≤ x1 + 2∆
¯

. This proves (9.9) since

x1 + 2∆ ≤ x0 + (d + 2)∆
= τ (r) + BlockTime + (d + 2)∆.
¯

If a notarization for a block different from B arrives at any replica
before x1 + 2∆ then the claim is already proven. We assume w.l.o.g.
that this is not the case. Note that under this assumption, (9.4)
applies to the events B and any signature under B.

Hence, by (9.4),
Let B ∈ Sx1 with rkB = f (x1). Since B ∈ Sx1 we have τ¯

(B) ≤ x1.

τ̄ (B) ≤ x1 + ∆.

The facts τ̄ (B) ≤ x1 + ∆ and rkB = f (x1 + ∆) together mean that
B has minimal rank in every honest replica’s view at time x1 + ∆.
Also, x1 +∆ ≥ τ (r)+BlockTime+∆ ≥ τ̄ (r)+BlockTime, i.e. x1 +¯

∆
is past the BlockTimewaiting period for every honest replica. Thus,
all honest replicas have broadcasted a signature for B by x1 + ∆.
By (9.4), all honest replicas receive f + 1 signatures by x1 + 2∆, i.e.
τ̄ (r + 1) ≤ x1 + 2∆. □

We remark without proof: In the case d = 0 the bound can be
improved to τ (r + 1) ≤ τ (r)+BlockTime+∆

¯
. The resulting bounds

are then strict for all d .¯

As a corollary, by induction, we conclude that the protocol makes
continuous progress:

Corollary 9.16. Suppose BlockTime ≥ 3∆. For all rounds r and
all honest replicas i , τi (r) is finite.

9.3 Near-Instant Finality

Finality is provided by Alg. 1. This section first proves the correct-
ness of this algorithm and then shows as the main theorem that
finality is achieved quickly under normal operation.

Recall:
• According to the relay policy the notarization will reach

all other honest replicas.
• As was stated in (9.2), if a block is honestly signed then the

notarized previous block will saturate the network.
• if a block is honestly signed then ntB is re-broadcasted

under the policy Def. 9.4b).

Lemma 9.17. Suppose zr−1 is a referenced notarization for round

r − 1. Then,
τ̄ (zr−1) ≤ τ̄ (r + 1) + ∆. (9.10)

14

Proof. Let Br be a notarized block with ntBr = zr−1. Since Br
received an honest signature, we have τ (Br) ≤ τ̄ (r + 1). Since Br
contains zr−1, we have τ (z
τ (zr−1) + ∆ ≤ τ̄ (r + 1) + ∆̄.

r−1) ≤ τ
¯
(Br)̄. This implies τ̄ (zr−1

¯

) ≤

□

Theorem 9.18 (Correctness of Finalization). Suppose T ≥
2∆. For every honest replica, before the replica executes Finalize(h)
in Algorithm 2 it has received all notarizations for round h that can

get referenced.

The assertion is precisely the correctness assumption (6.1).

Proof. Suppose zr−1 is a referenced notarization for round r −1.
From (9.10) and (9.3), we get

τ̄ (zr−1) ≤ τ (r + 1) + 2∆. (9.11)
¯

In particular, for any honest replica i ,

τi (zr−1) ≤ τi (r + 1) + 2∆. (9.12)

This shows that any notarization for round r−1 that arrives at i after
τi (r+1)+2∆ cannot get referenced. Since Alg. 2 calls Finalize(r−1)
at time τi (r + 1) +T and T ≥ 2∆, this proves the claim. □

Corollary 9.19. Suppose BlockTime ≥ 2∆. Suppose zr−1 is a

referenced notarization for round r − 1. Then,

τ̄ (zr−1) ≤ τ (r + 2)
¯

. (9.13)

Proof. By (9.5), τ (r + 1) + BlockTime ≤ τ (r + 2)
¯

. Hence, by

¯
+(9.11), τ̄ (zr−1) ≤ τ (r
¯ 1) + 2∆ ≤ τ (r + 2)

¯
. □

Provided that BlockTime ≥ 2∆, (9.13) provides an alternative
criteria for when to execute Finalize(r − 1) in Alg. 2 that does not
requireT . Instead of waiting forT into round r + 1, the finalization
procedure can simply wait for round r + 1 to end in the observer’s
view.

Theorem 9.20 (Main Theorem). Under normal operation in

round r , every transaction included in a block for round r is final

for an observer after two confirmations plus the maximum network

roundtrip time 2∆.

Proof of Theorem 9.3. Suppose round r has normal operation,
i.e. only one block Br gets notarized for round r . We assume the
observer has chosen T = 2∆. At time T after seeing a notarization
for round r + 1, the observer will finalize round r . Since Nr (the
bucket of all received notarized blocks for round r) contains only
Br , Br is appended to the final chain at this time. □

9.4 Chain Properties

Recall that each replica at the end of each round has its own view
of an append-only finalized chain (cf. Alg. 2). We consider the
following properties regarding state and content of the finalized
chain C .

Definition 9.21 (Chain properties).

a) Growth with parameter k . Each honest replica’s finalized chain
at the end of their round r has length ≥ r − k .

b) Consistency. IfC,C ′ are the finalized chains of two honest parties,

c) Quality with parameter l and µ. Out of any l

taken at any point in time, then C is a prefix of C ′ or vice versa.

consecutive blocks
from the finalized chain of an honest replica, at least µl blocks
were proposed by an honest replica.

Proposition 9.22. Persistence follows from the properties of chain

consistency and chain growth.

Proof. Suppose a transaction is included in the finalized chain
of one honest replica i , say in the block at round r . Given any other
honest replica j, by the growth property, j’s finalized chain will
eventually reach length r as well. At that point, the consistency
property guarantees that j’s block at round r is identical to the one
in i’s finalized chain. □

Proposition 9.23. Liveness follows from the properties of chain

quality and chain growth.

Proof. A transaction originating from an honest replica is picked
up by all other honest parties and included in their block propos-
als.10 The growth property guarantees that the finalized chain will
eventually grow arbitrarily long. The chain quality property applies
and guarantees that there will eventually be a block in the finalized
chain that was proposed by an honest replica. □

9.4.1 Chain Growth.

Proposition 9.24 (Chain Growth). Suppose BlockTime ≥ 3∆.
Accepting a failure probability of ρ, the Chain Growth property holds

with parameter k = ⌈− logβ ρ⌉.

Proof. We first look at the property assuming normal operation
in round r . In this case, the chainwill be finalized up to and including
round r at the end of round r + 1 plus 2∆ according to Alg. 2. In
terms of round numbers, based on Proposition 9.10, each round
including round r + 2 takes at least BlockTime − ∆ > 2∆, thus at
the end of round r + 2, we can finalize round r so that the finalized
chain will have length r + 1. This means the property holds with
k = 1.

Whenever the highest priority block maker for r is honest then
round r has normal operation (Prop. 9.14). Thus, in general, normal
operation happens with probability at least 1 − 1/β . Then, with
probability at least 1 − (1/β)k the property holds with parameter k .
Thus, if we equate this probability with the minimal desired success
probability of 1 − ρ and solve for k we get k = ⌈− logβ ρ⌉. □

9.4.2 Chain Consistency.

Proposition 9.25 (Chain Consistency). Suppose T ≥ 2∆. Sup-
pose two honest replicas i, i ′ output the finalized chains C,C ′ upon
executing Finalize(h), Finalize(h′), respectively. Then C ≤ C ′ or
C ′ ≤ C .

Proof. Assume w.l.o.g h′ ≤ h. Let Nh ,Nh
′ be the sets of Al-

gorithm 2 at the time when Finalize(h) is being executed by i, i ′,
respectively. Since h′ ≤ h, by Prop. 6.1, C ′ ≤ C(Nh). Let X

′ be the
set of all round-h notarizations that can get referenced. Note that X
is globally defined after all honest replicas have ended their round
h+ 1 (though X is not known to anyone). By Thm. 9.18 (correctness
10There may be reasons why a transaction can not be included in a block proposal
even if the proposer is honest. Those reasons, such as limited block space, are not part
of our definition of "liveness" and are not considered here.

15

′of finalization), we have X ⊆ Nh ,Nh . The set X is furthermore
non-empty because Finalize(h) is only called once some round-h
notarizations are actually referenced. Hence, C = C(Nh) ≤ C(X)
and C ′ ≤ C(Nh) ≤ C(X). The fact that C,C ′′ are prefixes of a
common chain proves the claim. □

9.4.3 Chain Quality. Whether the highest priority replica in
round r is adversarial can be modelled as a Bernoulli trial Xr with
success probability f (U)/|U |. Since the adversary cannot bias the
random beacon, the trials Xr for different r are independent. There-
fore, an execution of the protocol comes with a Bernoulli process
X1,X2, . . . that models the success of the adversary in gaining pref-
erence on the proposed block.

Following Garay et.al. [5], we define an execution of the protocol
as typical if the Bernoulli process does not deviate too much from its
expectation. For any set of rounds S we define the random variable
X (S) :=

∑
i ∈S Xi .

Definition 9.26. An execution is (ϵ,η)-typical if, for any set S of
consecutive rounds with |S | ≥ η,���X (S) − E(X (S�))

E(X (S))

��� <� ϵ

The idea is that a) we can guarantee chain quality in all typical
executions, and b) any execution is typical with all but negligible
probability. In practice, "negligible probability" is defined by the
security parameter κ and the parameters ϵ,η are a function of κ.

Proposition 9.27 (ChainQuality). Suppose BlockTime ≥ 3∆.
In a (ϵ,η)-typical execution the Chain Quality property holds for

µ = (1 − 1/β)(1 − ϵ) and l = η.

Proof. Whenever Xr = 0 there will be only one notarization
for r (Prop. 9.14). This notarization will be for the honest proposer’s
block, so the honest proposal is guaranteed to be in the finalized
chain. Therefore the chain quality is at least (1 − 1/β)(1 − ϵ) for a
(ϵ,η)-typical execution if l ≥ η. □

ACKNOWLEDGMENTS

We would like to thank Robert Lauko, Marko Vukolic, Arthur Ger-
vais, Bryan Ford, Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris,
Cristina Basescu and Nicolas Gailly for helpful comments and dis-
cussions.

REFERENCES

[1] RANDAO: A DAO working as RNG of Ethereum. https://github.com/randao/
randao, 2017.

[2] J.-L. Beuchat, J. E. González-Díaz, S. Mitsunari, E. Okamoto, F. Rodríguez-
Henríquez, and T. Teruya. High-Speed Software Implementation of the Optimal
Ate Pairing over Barreto-Naehrig Curves. Pairing, 6487:21–39, 2010.

[3] D. Boneh, B. Lynn, and H. Shacham. Short Signatures from the Weil Pairing. In
Proceedings of the 7th International Conference on the Theory and Application of

Cryptology and Information Security: Advances in Cryptology, ASIACRYPT ’01,
pages 514–532, London, UK, UK, 2001. Springer-Verlag.

[4] I. Eyal and E. G. Sirer. Majority is not enough: Bitcoin mining is vulnerable.
In International conference on financial cryptography and data security, pages
436–454. Springer, 2014.

[5] J. Garay, A. Kiayias, and N. Leonardos. The Bitcoin Backbone Protocol with
Chains of Variable Difficulty. In Annual International Cryptology Conference,
pages 291–323. Springer, 2017.

[6] R. Gennaro, S. Goldfeder, and A. Narayanan. Threshold-optimal DSA/ECDSA

[7] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin.

signatures and an application to Bitcoin wallet security. In International Con-

ference on Applied Cryptography and Network Security, pages 156–174. Springer,
2016.

Advances in Cryptology —

EUROCRYPT ’99: International Conference on the Theory and Application of Cryp-

tographic Techniques Prague, Czech Republic, May 2–6, 1999 Proceedings, chapter
Secure Distributed Key Generation for Discrete-Log Based Cryptosystems, pages
295–310. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.

[8] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand: Scaling
Byzantine Agreements for Cryptocurrencies.

[9] D. E. Knuth. The art of computer programming. volume 1: Fundamental algo-
rithms. volume 2: Seminumerical algorithms. Bull. Amer. Math. Soc, 1997.

[10] B. Libert, M. Joye, and M. Yung. Born and raised distributively: Fully distributed
non-interactive adaptively-secure threshold signatures with short shares. Theo-
retical Computer Science, 645:1–24, 2016.

[11] S. Mitsunari. Barreto-Naehrig curve implementation and BLS. https://github.
com/dfinity/bn, 2017.

16

https://github.com/randao/randao
https://github.com/randao/randao
https://github.com/dfinity/bn
https://github.com/dfinity/bn

	Abstract
	1 Prologue
	2 Introduction
	3 A high-level view of the Consensus Protocol
	4 Models and Preliminaries
	4.1 System Model
	4.2 Threat Model
	4.3 Cryptographic Primitives
	4.4 Dfinity's Block Chain

	5 Probabilistic Slot Protocol and Notarization
	5.1 Block Rank and Chain Weight
	5.2 Block Proposals
	5.3 Block Notarization
	5.4 Properties of notarization

	6 Finalization
	6.1 Description
	6.2 Properties of Finalization

	7 Decentralized Randomness Beacon
	7.1 Background on Threshold Cryptography
	7.2 The BLS signature scheme
	7.3 Randomness Generation

	8 Scalability
	8.1 Threshold Relay
	8.2 Open Participation

	9 Security Analysis
	9.1 Broadcast and Processing
	9.2 Timing and Progress
	9.3 Near-Instant Finality
	9.4 Chain Properties

	Acknowledgments
	References

